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ABSTRACT 
In this paper, we propose a new selflnitiated 

iterative optimum weighted least-squares (WLS) 
approximation method for the design of linear phase FIR 
digital filters. The designed optimum filters have nearly 
equiripple approximation error in every frequency band 
which is smaller than that of Parks-McClellan's 
optimum equiripple linear phase FIR filters [3,4] with the 
same filter length. 

I. INTRODUCTION 
The finite impulse response (FIR) filter has been 

popularly used in various signal processing arw because 
it is stable and linear hase can be easily attained. The 
windowin method (1,2rand the optimum approximation 
method b,4] are the two major FIR filter design 
methods. Although the windowing method is simple, it 
needs to  go through the time consuming tradeoff 
procedure of the sidelobe level and the width of the 
transition band due to windowing effects in order to meet 
the design specifications. On the other hand, the 
optimum approximation method, which is free from 
windowing effects, estimates the filter coefficients by 
minimizing a selected objective function of 
approximation error in the frequency domain. However, 
optimum filter coefficients are usually obtained 
iteratively because the objective function is generally 
nonlinear without a closed-form solution for optimum 
filter coefficients. The optimum approximation method 
outperforms the windowing method in that the required 
order of the filter associated with the former is smaller 
than that associated with the latter for the same 
specifications, and in that the former can accommodate 
different approximation errors in different frequency 
bands but the latter cannot. 

In this paper, we propose a self-initiated iterative 
optimum WLS approximation method for the design of 
linear phase FIR digital filters. Ln Section 11, we present 
the new optimum WLS approximation method. We then 
present two design examples to demonstrate its good 
performance in Section 111. Finally, we draw some 
conclusions. 

11. THE NEW OPTIMUM WLS APPROXIMATION 
METHOD 

Let us present the new optimum WLS 
approximation method for the design of linear phase FIR 
filters through the design of lowpass filter. It is 
well-known that the coefficients h(n) of an Mth order 
FIR filter with linear phase are either symmetric or 
anti-symmetric with respect to its center. Thus, we 
further assume that M is even and 

h(n)=h(M-n) (1) 
without loss of generality. The frequency response 
H(f)=H(z=J") [I] is known to be 

L 

where L=M/2. 

filter with linear phase is given as follows: 

where 

The frequency response of the desired lowpass 

Hd(f) = d(f ) .expWfi I  (3) 

f and fs denotes the cutoff frequencies in the passband 
P 
and the stopband, respectively. Thus, the interval (f f,) 
is the transition band. The fkequency response, H($ of 
the optimum FIR filter to be designed must meet the 
following specifications: 

(1) I H(f) I W P ) '  03 I f l  <fpl 
(2) I H(f) I GS' fsr I fl<1/21 

where 6 >O as well as 6,>0 denote the tolerable 
approximation errors in the passband and the stopband, 
respectively. Next, we present the WLS estimator for the 
desired filter coef€icients on which the new design method 
is based. 

We define the approximation error e(f) in the 
frequency domain as 

P 

L 

so that the linear phase of H(f) is identical with that of 
Hd(f). For notational simplicity, let d(k) and e(k) also 

denote d(f=k/2N) and e(f=k/2N), respectively, where N 
is the total number of samples to be used. Thus, we can 
express e(k) for k=O, 1, ..., N-1, in the following linear 
vector form: 

where 
c = d - D h  ( 6 )  

- e = [e(O), e(l), ..-, e(N-l)]', (7) 
- d = (d(O), d(l), ..., d(N-l)]', (8) 
- h = [h(O), h(l), "'1 h(L)I' (9) 

and D is an Nx(L+l) matrix with the (k,i)th element 
equal to 
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The WLS estimate, b, of h is well-known [5] to be 
A 

- h = [D' W D]-' D' W d (11) 
which minimilies the following s u m  of weighted error 
squares: 

J(hJ = 2' W e = w(k) e2(k) (12) 
N-1 

k=O 
where W is an NxN diagonal weighting matrix 

W = diag [w(O), w(l), ..., w(N-1)] 
with w(k)lO for all OlklN-1. A well-known property of 
WLS estimators is: 

(Pl)  The large the weight w(k), the smaller is 
the associated estimation error e(k). 

Before describing the p r o p o d  algorithm, we need to  
define some notations for easy latter W. 

(1) The error ripple: We define the ith error ripple, f(k), 
in the passband as: 

(13) 

k 
e(k), fi-lli&fi , for i=l, 2,.-, q 
0. otherwise 

f(k)  = 

where q is the 'total number of error ripples, fi is 
associated with e(f=fi)=O, i=l, 2,.., q-1 (see (5)), and fo 
and f are cutoff frequencies in the passband. For the 
case of lowpass filter design, fo=O and f =f . Similarly, 

the jth error ripple in the stopband, denoted es(k), is 
defined in the same mauner. 

q 
Q P  

1 

(2) Amplitude of error ripple: We define the amplitude, 
lep(ki)l, of the error ripple {(k), as le (k.)J = 

max{ l q ( k )  I} for l l i lq .  However, if le (k ) I (associated 
with the first error ri ple is not a local maximum, we set 
lep(kl)I = lep(kJf. 12 lep(kq)l (associated with the 

last error rip le) is not a local maximum, we also set 
lep(kq)l = Pep(kFl)l. The error ripple amplitudes, 
le (k.) I for all j, are defined in the same manner. 

(3) The maximum and the minimum of error ripple 
amplitudes: 

P '  

P 1  

S J  

a p = ~ {  lep(ki) 11, ~p="n{ lep(ki) I}, 
as=*{ IesCkj) I }, P S = * ~ {  I%(kj) 11. 

J J 
The proposed iterative design method, which is 

shown in Figure 1, is based on the property (Pl)  of WLS 
estimators. Therefore, in the inner loop, we update the 
weight w ( y  ydiy to square of error ripple 
amplitudes i.e., le (k.) and le (k.)l) in order to yield 
a equiripple frequency response. Contrast to the 
Parks-Mcclellan's method [3,4], the proposed design 
method can also accommodate different approximation 
errors in different frequency bands in the outer loop by 
adjusting w(k) according to the approximation error ratio 

S J  

START 
1 )  

m VALUE 

b=(6,/6,)* 

I 
0. k E TRANSmON BAND . 
4 k c  STOPBAND 

Figure 1. Optimum HIS approximation method. 

as/ap in order to direct (adas) to the desired 
approximation error ratio (6 d 6 5) . Next, we describe 
what the proposed design method includes in the inner 
loop and the outer loop, respectively. 

The proposed design method begins with the 
initial value b=(6J6,J2 and the initial 

0, k €  t ransi t ionband 

b,Ak E stopbaud 
The WLS estimate h and the assoCiated e are then 
computed by 11) and 6), reqxxtively. We then search 
for all le (k.)! and lelk.) I with which we compute the 
unnormahd weight wl[kj defined as P '  

kEith ripple in passband 
2 (14) 

w(k)- lea(ki)l , kejth ripple in stopband 
w'(k)= 

- J  
for all i and j, and maxima of w'(k), denoted w and ws, P 
as follows: 

(15) 
(16) 

w = max{w'(k), k E passband}, 
ws= max{w'(k), k E stopband}. 

P 

Then we check whether the approximate frequency 
response has nearly equiripple by (s-pJ/apSEp and 
(as-ps)/aSSES, where E P and E~ are preassigned small 
positive constants. Finally, we update w(k) by 
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k E  transi t ionband 
w(k)= 1 w (  O :  k I/ w p' kEpassband (17) 

(w'(k)/ws)-b, k E stopband 
In the outer loop, we check whether (a /a ) is 

< E where E is also a preassigned small positive constant. 
Then, we utdate the value of b by b=b where 

b=(a /a )2.(S /S)2-b  (18) S P  P S  
which will direct the ratio (a /a ) to (S /6 ) in the 
ensuing iterations. 

Several noteworthy remarks with regard to the 
proposed method are as follows: 
(Rl) Unlike ot5er approximation methods, the initial 

guess for & is not needed by the proposed design 

P S  
nearly the same as (6 P S  /6  1 by I (aplas)+p!bs) I /(s,/fis) 

P S  P S  

method. 
Associated with the optimum filter, a /a ES /S 

P S P S  
which is required by the proposed method. 
However the maximum amplitudes of error 
ripples (a and as) may be greater than the 
specifications (i.e., S and 6,) for the selected filter 
order M. If this case happens, we need to increase 
M and then go through the previous design 
procedure. 
Associated with the optimum filter, the maximum 
approximation error in the passband may be 
greater than a and that in the stopband may also 
be greater than as. In other words, either 

P 
P 

P 

m = { l q k ) I )  or m a X { l + p I }  or both can be 

greater than a and either max{ (es(k) I }  or 

max{ lell(k) I} or both can also be greater than 
as, where q' is the number of error ripples in the 
stopband. 
One can observe from (17) and (18), that for each 
iteration, O<w(k)<l for those k belonging to the 
passband and O<w(k)<b for those k belonging to 
the stopband, and that the parameter b is only 
used in updating w(k) for k belongin to the 
stopband and is updated according to a in the 

S P  
outer loop. In other words, a plays the role of 
reference for adjusting the approximation^ error 
level associated with the stopband through b. 
Because the proposed method is an approximation 
method for linear phase FIR filter design, unlike 
any consistent WLS estimators, approximation 
errors never tend to zero as the parameter N 
approaches infinity. Therefore, the optimum filters 
for N large enough are the same. 

P' 

P 

111. DESIGN EXAMPLES 
We now present two design examples of FIR filter 

with linear phase. One example is for a lowpass filter case 
and the other is for a bandpass filter case. For these two 
examples, the numkr  of frequency samples used was 
N=2000 and the parameters E. cS and E. used were 
E =E =0.01 and &=0.01. 

Example 1. Lowpass filter 
The parameters f f , 6 and Ss for specifying the 

P' s P 
linear phase lowpass FIR filter to be designed were as 
follows: 

P' 
P S  

(1) f =0.2 and fs=0.3; 
(2) 6 = 0.01 and Ss= 0.001. 

P 
P 

The parameter M used was M=27. The frequency 
response of the optimum lowpass filter is shown in Figure 
2a. Approximation error (unweighted) is shown in Figure 
2b, from which one can see that the frequency response of 
the optimum filter has nearly equiripple in each 
frequency band. The maximum of error ripples in the 
passband is a -0.0090<6 and that in the stopband is 
asw0.0090<6s. The ratio a /a E S /S =1. However, the 
maximum approximation errors (not a local extremum) 
in the passband occurs at f=f and its value is 0.0095<S P P 
(see (R3)). On the other hand, the maximum 
approximation error in the stopband is the same as 
asc0.00090. 

The optimum equiripple linear phase FIR filter 
with the same order using the well-known iterative 
Parks-McClelly's mzthod [l] was reported t," have 
corresponding a = as%0.00092. Remark that as/as % 

a /a -1.022 (or 0.2 dB improvement by our method) 
whereas the maximum approximation error (~0.0095) of 
the dpigned FIR filter by our method is slightly larger 
than a 

Example 2. Bandpass filter 

PM P 
P S  P S  

P 
h 

P PN 

P- 

The desired d(f) (see (4)) for this case was given 

0, forO<If(<fsl 

0, for fs2<lf(<1/2 

bY 

where fs1=0.15, f =0.175, f =0.3 and fs2=0.35 are 
cutoff frequencies. The specifications of the the filter to 

Pl  P2 

where Ssl=O.Ol, S =0.01 and bs2=0.05 denote the 
P 

tolerable approximation errors. 
The parameter M used was M=74. The frequency 

response of the optimum bandpass filter is shorn in 
Figures 3a. Approximation error (unweighted) is shown 
in Figure 3b. Again, one can see, from Figure 3b, 
that the frequency response of the optimum filter h a  
nearly equiripple in each frequency band. The miuimum 

Although, the proposed design method shown in 
Figure 1 was described via the case Of lowpass FIR filter 
with linear Phase, it Can be applied for general cases 
Of linear phase FIR filter design with some minor 
modifications. As a final remark, the desired d(f) can be 
any real function as needed by the designer. 
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of error ripples in the first stopband is asl~0.0099<Ssl, 
that in the passband is a -0.0099<6 and that in the 
second stopband is as2=0.0499<Ss2. The ratio a p /a s l  
6 /6 =1 and the ratio as2/asl = 5.04 ~ 6 , ~ / 6 , ~  =5. P 81 
Note that, for the first stopband and the passband, the 
maximum approximation errors are almost the same as 
asl and a respectively, whereas that in the second 
stopband is the same as as2. 

The optimum equiripple linear phase FIR filter 
with the same filter length using the Parks-McClellan's 
algorithm [l] was r e p o t d  to have corresponding 
aSl=a =0.011>a =a and as2=0.055>as2 (or 0.9 dB and 
0.85 dB improvements, respectively, by our method.) 

IV. CONCLUSIONS 
We have presented a new self-initiated iterative 

optimum WLS approximation method for the design of 
linear phase FIR digital filters based on the ropert 
(Pl) of WLS estimators. The key weights w(k) ( l4j  
through (17)) used in each iteration are determined by 
error ripple amplitudes while those associated with the 
transition band are set to be zero. The proposed method 
tries to search for the filter with equiripple in every 

PN P 

P' 

A A  

P sl P 

FmquancY 

frequency band and then adjusts different approximation 
errors in different frequency bands according to the 
design specifications. The designed optimum filters have 
nearly equiripple amplitude in every frequeucy band 
which is slightly s d e r  than that of Parks-McClellan's 
optimum equiripple linear phase FIR filter with the same 
filter length. This fact was supported by the Presented 
two design examples The proposed design method is also 
applicable for the design of any arbitrary linear phase 
FIR filters with some minor modifications. 
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(a) Figure 2. Optimum lowpass FIR filter with linear phase for M=27 and N=2000. (a) Log (b) 
magnitude and (b) approximation error (unweighted). 
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(a) Figure 3. Optimum bandpass FIR filter with linear phase for M=74 and N=2000. (a) Log (b) 
magnitude and (b) approximation error (unweighted). 
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